skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Zhendong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, β-Ga 2 O 3 fin field-effect transistors (FinFETs) with metalorganic chemical vapor deposition grown epitaxial Si-doped channel layer on (010) semi-insulating β-Ga 2 O 3 substrates are demonstrated. β-Ga 2 O 3 fin channels with smooth sidewalls are produced by the plasma-free metal-assisted chemical etching (MacEtch) method. A specific on-resistance (R on,sp ) of 6.5 mΩ·cm 2 and a 370 V breakdown voltage are achieved. In addition, these MacEtch-formed FinFETs demonstrate DC transfer characteristics with near zero (9.7 mV) hysteresis. The effect of channel orientation on threshold voltage, subthreshold swing, hysteresis, and breakdown voltages is also characterized. The FinFET with channel perpendicular to the [102] direction is found to exhibit the lowest subthreshold swing and hysteresis. 
    more » « less
  2. Abstract On-chip manipulation of charged particles using electrophoresis or electroosmosis is widely used for many applications, including optofluidic sensing, bioanalysis and macromolecular data storage. We hereby demonstrate a technique for the capture, localization, and release of charged particles and DNA molecules in an aqueous solution using tubular structures enabled by a strain-induced self-rolled-up nanomembrane (S-RuM) platform. Cuffed-in 3D electrodes that are embedded in cylindrical S-RuM structures and biased by a constant DC voltage are used to provide a uniform electrical field inside the microtubular devices. Efficient charged-particle manipulation is achieved at a bias voltage of <2–4 V, which is ~3 orders of magnitude lower than the required potential in traditional DC electrophoretic devices. Furthermore, Poisson–Boltzmann multiphysics simulation validates the feasibility and advantage of our microtubular charge manipulation devices over planar and other 3D variations of microfluidic devices. This work lays the foundation for on-chip DNA manipulation for data storage applications. 
    more » « less
  3. Monolithic strong magnetic induction at the mtesla to tesla level provides essential functionalities to physical, chemical, and medical systems. Current design options are constrained by existing capabilities in three-dimensional (3D) structure construction, current handling, and magnetic material integration. We report here geometric transformation of large-area and relatively thick (~100 to 250 nm) 2D nanomembranes into multiturn 3D air-core microtubes by a vapor-phase self-rolled-up membrane (S-RuM) nanotechnology, combined with postrolling integration of ferrofluid magnetic materials by capillary force. Hundreds of S-RuM power inductors on sapphire are designed and tested, with maximum operating frequency exceeding 500 MHz. An inductance of 1.24 μH at 10 kHz has been achieved for a single microtube inductor, with corresponding areal and volumetric inductance densities of 3 μH/mm 2 and 23 μH/mm 3 , respectively. The simulated intensity of the magnetic induction reaches tens of mtesla in fabricated devices at 10 MHz. 
    more » « less
  4. Abstract This work reports a three‐dimensional (3D) radio frequency L−C filter network enabled by a CMOS‐compatible two‐dimensional (2D) fabrication approach, which combines inductive (L) and capacitive (C) self‐rolled‐up membrane (S‐RuM) components monolithically into a single L−C network structure, thereby greatly reducing the on‐chip area footprint. The individual L−C elements are fabricated in‐plane using standard semiconductor processing techniques, and subsequently triggered by the built‐in stress to self‐assemble and roll into cylindrical air‐core architectures. By designing the planar structure geometry and constituent layer properties to achieve a specific number of turns with a desired inner diameter when the device is rolled up, the electrical characteristics can be engineered. The network layouts of the L and C components are also reconfigurable by selecting appropriate input, output, and ground contact routing topographies. The devices demonstrated here operate over the range of ≈1−10 GHz. Their area and volume footprints are ≈0.09 mm2and ≈0.01 mm3, respectively, which are ≈10× smaller than most of the comparable conventional filter designs. These S‐RuM‐enabled 3D microtubular L−C filter networks represent significant advancement for miniaturization and integration of passive electronic components for applications in mobile connectivity and other frequency range. 
    more » « less